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The finite state models have been used extensively in protocol conformance testing, as well as 
in software and hardware testing. It is well known that exhaustive testing is often impractical 
since it may require the execution of a huge number of test cases. In practice, testing is a 
trade-off between increased confidence in the correctness of the implementation under test 
and constraints on the amount of time and effort that can be spent in testing. Therefore, the 
fault coverage, or adequacy of the test suite, becomes a very important issue. In this paper, we 
analyze various techniques used to evaluate fault coverage based on finite state models in the 
form of finite state machines (FSM) or labeled transition systems (LTS). We also point out 
certain issues which need further study. 
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1. INTRODUCTION 

Testing is a critical phase in the development life cycle of a system. Testing consists of a 
number of execution scenarios of a system implementation against a selected set of test cases 
called a test suite. A faulty implementation is said to be detected if its execution against a test 
case distinguishes its behavior (or output) from what is expected. 

Testing is used to ascertain the correctness of a system implementation with respect to its 
requirement specification. The essential idea of this correctness-proving viewpoint is that an 
execution scenario in which no fault is detected ensures that the implementation is free of 
certain kinds of faults. Therefore, exhaustive testing, which requires that all the possible 
execution scenarios of the implementation be carried out, is able to prove the correctness of 
the implementation. In general, exhaustive testing is often impractical since it may involve a 
huge number of execution scenarios to be performed. In the more practical and so-called 
fault-based testing approaches [More90], [Boch91], a fault model is first selected. It specifies 
a set of faults of which an implementation should be free. However, it still can be too 
expensive to prove by testing that an implementation is free of all the specified faults, as it 
still may require the execution of a very large number of test cases. In practice, therefore, a 
test suite which consists of only a relatively small number of test cases will be actually 
employed to test the implementation. As such, testing is often a trade-off between increased 



 

   

confidence in the correctness of the implementation under examination and constraints on the 
amount of time and effort that can be spent in testing the implementation. Whenever such a 
trade-off is made, it is desired to have a measure of the effectiveness of testing in terms of the 
percentage of the specified faults that can be detected. 

The finite state models have been extensively used in hardware and software testing, such as 
conformance testing of communication protocols [PBD93], [BoPe94]. They are also being 
used in the testing of object-oriented systems, see for example [HoSt93], [TuRo92]. Testing 
based on the finite state models is always treated within certain restricted frameworks. With 
such a restricted framework, the concept of full or complete fault coverage can be addressed, 
and fault coverage analysis of a given test suite with respect to a finite state specification can 
be performed. In this paper, we are going to give a review of fault coverage analysis methods 
based on the finite state models. Our discussion will be mainly based on the finite state 
machine (FSM) model. However, we will also address relevant issues for the labeled 
transition systems (LTS). 

The rest of the paper is organized as follows: In Section 2, a framework of fault coverage 
analysis based on the traditional model of FSMs is presented. In Section 3, we discuss certain 
parameters of the specification machines and properties of test suites which play an important 
role in achieving full fault coverage. The existing approaches for evaluating the fault coverage 
of tests with respect to deterministic FSMs are considered in Section 4. Section 5 highlights 
some fault coverage analysis problems which mostly remain open in the cases of nontrivial 
test architectures and nondeterministic specifications, FSMs and LTSs. We conclude in 
Section 6 by discussing possible applications of techniques for fault coverage analysis. 

 

2. BASIC FRAMEWORK FOR FAULT COVERAGE ANALYSIS 

We start with an overview of a fault coverage framework, based on the traditional model of 
completely specified deterministic FSMs. 

FSM-based testing is usually formalized as the problem of testing an FSM implementation: 
given an FSM representation (specification) of a system (denoted henceforth as MS) and an 
implementation of the system (denoted henceforth as MI), we are required to determine if the 
implementation machine MI conforms to (i.e., is correct with respect to) the specification 
machine MS by testing MI as a black-box. This implies that we should generate from MS a set 
of input sequences, called a test suite, and the corresponding set of expected output sequences 
such that MI conforms to MS if and only if, when the input sequences in the test suite are 
applied to MI, the observed output sequences from MI are the same as the corresponding 
expected output sequences. As already pointed out in the literature, this problem is not 
solvable unless it is dealt within a restricted framework. Therefore, some assumptions should 
be made about the specification machine MS and the implementation machine MI. It is 
important at this point to summarize them, since any further results in fault coverage should in 
one way or another relax at least one of these assumptions. 

Typical assumptions about the specification machine are that MS is not only complete and 
deterministic, but also reduced (and therefore minimal), and initially or strongly connected 
(later in this paper, we also consider other classes of machines which do not satisfy these 



 

   

assumptions). 

In case of black-box testing based on the specification, the test suite is usually developed 
based on the abstract interfaces defined within the specification and directly accessed by a 
tester. Here we refer to the local single-layer test method defined by the international standard 
[IS9646]. It must be assumed that the (abstract) properties of these interfaces are satisfied by 
the concrete realization of these interfaces in the implementation under test (IUT); we call this 
the correct interface assumption [BoPe94]. In the context of FSM-based testing, it is assumed 
that the interface is event-driven, and all events on the interface are alternately controlled by 
the environment and the IUT. The correct interface assumption implies that any IUT can also 
be modeled as an FSM. In particular, no IUT can "refuse" to execute any input in any of its 
states or produce an output without any input. Any IUT is thus a completely specified FSM 
MI, even if MS is partial.  

Moreover, a test suite (TS) is typically constructed based on the input alphabet of the 
specification FSM. Therefore, it is assumed that the input alphabet of MI at least covers that 
of MS, or in other words, an implementation to be tested was constructed from this 
specification and not from any other. Yet another assumption about the deterministic behavior 
of MI is typically made when MS is deterministic.  

A test suite TS can be one of two types: (1) it consists of a single sequence, or (2) it contains 
several sequences, which are supposed to be applied to the initial state of an implementation. 
In the latter case, it is assumed that the implementation has the reliable reset facility ensuring 
that each test sequence is applied to the same initial state. As shown later, the reliable reset 
assumption usually facilitates fault coverage analysis, as certain properties of the TS become 
more evident. This assumption also makes it possible to deal with specification FSMs which 
are only initially connected but not strongly connected. 

The formidable obstacle in constructing or analyzing a test suite is that it must verify whether 
a given conformance relation (in the case considered here, the equivalence relation between 
FSMs) defined on infinite sequences, holds between two machines. At the same time, the test 
suite has to be finite for practical reasons. The apparent contradiction between these two 
requirements is usually resolved by assuming that in testing, we are dealing with a finite 
number of implementations derived from the given specification machine MS. A common 
way to limit their number is to assume a fault model. Once the set of possible 
implementations, denoted henceforth as Impl(MS), is limited, we can verify with the help of 
suitable tests whether a machine from this set is conforming to the specification. Thus the 
validity of a conclusion drawn from the test campaign heavily depends on how this finite set 
of implementations has been chosen, whether it reflects all practical cases or not. The more 
we know about the real IUTs, the more precisely this set (the fault model) can be determined, 
yielding a shorter test suite. However, black-box testing usually implies that not much is 
known about the IUTs before testing. 
Apart from explicitly enumerating all machines of Impl(MS), which is feasible for a small 
number of FSMs, there are at least two other techniques to describe this set:(1) limiting the 
number of states; and (2) the use of fault functions [PeYe92]. 

In the first case, all possible implementations are modeled by the universe Impl(m, MS) of all 
complete FSMs which have the same input and output alphabets as MS and up to m states, 



 

   

where m≥n and n is the number of states of MS. This is the fault model most widely used in 
the context of black-box testing. It is based on the observation that all FSMs in Impl(m, MS) 
can be treated as mutants of MS. A mutant is an FSM obtained by applying to MS (which 
might be a partial machine) each of the following four types of operations, in any order, a 
certain number of times (including zero times): 
Type 1: change the tail state of a transition; 
Type 2: change the output of a transition;  
Type 3: add a transition; and 
Type 4: add an extra state. 
Such a mutation technique works well in the context of deterministic specifications. However, 
in the case of nondeterministic systems and the conformance relation based on trace inclusion, 
i.e. the reduction relation [PBD93], the correspondence between mutations and erroneous 
behavior is not so straightforward.  

In the second case, it is assumed that mutants may deviate from the specification machine 
only in a fixed number of so-called suspicious transitions, i.e. the above operations are 
applied to certain transitions, while the remaining transitions are assumed to be correctly 
implemented. Such grouped faults are compactly represented by a fault function which is the 
behavior function of an appropriate nondeterministic FSM constructed for the specification 
FSM MS in such a way that MS is one of its deterministic submachines. As an example, 
output faults correspond to a special form of the fault function [PeYe92]. 

A TS is said to be complete for MS in the class Impl(MS) if for each machine from this set 
which is not conforming to MS (in the sense of a given conformance relation), there is an 
input sequence in TS that can detect this mutant. A TS which is complete in Impl(m, MS) is 
simply called m-complete. Complete test suites were first introduced as checking experiments 
for completely specified FSMs [Moor56]. 

Since completeness of a test suite is usually not easy to achieve in testing, its fault coverage, 
i.e., the ability of the test suite to detect faulty implementations, can be characterized by a real 
number between 0 (no fault covered) and 1 (complete in the given class). Let MS be the 
specification machine, TS be a test suite, and Impl(m, MS) be the class of implementations. 
To define the fault coverage, we need to use the following notations: 
Nt(m, MS) - the total number of machines in Impl(m, MS); 
Nc(m, MS) - the number of machines in Impl(m, MS) which conform to MS; 
Np(m, MS, TS) - the number of machines in Impl(m, MS) which can pass the given test suite 
TS. 

It is clear that, 
Nt(m, MS) - Nc(m, MS) is the number of machines in Impl(m, MS) which do not conform to 
MS; 
Nt(m, MS) - Np(m, MS, TS) is the number of machines in Impl(m, MS) which cannot pass the 
given test suite TS (and therefore do not conform to MS). 

The fault coverage of a test suite TS with respect to MS, denoted as FC(m, MS, TS), is  



 

   

FC(m, MS, TS) = 
Nt(m, MS) - N p(m, MS, TS)

Nt(m, MS) - N c(m, MS)
 

This kind of fault coverage measure has been used in a number of papers, see, for instance, 
[Boch91], [DaSa88]. There are, however, several problems with this formula:  

1) The fault coverage is determined, only if we make the additional assumption that the output 
alphabets of all the machines in Impl(m, MS) are subsets of Y - the output alphabet of MS 

(under this assumption, Nt(m, MS) = (m|Y|)m|X|), where X is the input alphabet of MS), 
otherwise the cardinality of Impl(m, MS) would remain unknown. Thus, the "real" coverage 
is much higher, since a large number of implementations with a "foreign" output symbol are 
also detected by the test suite. 

2) The value of FC(m, MS, TS) is not equally distributed over [0,1]. A TS consisting of a 
single test event already has the coverage of more than (|Y|-1) / |Y|. If we are given an FSM 
with, for instance, just ten outputs, the fault coverage of a single test event is already over 
90%. As the number of outputs in the MS increases, the fault coverage of a single test event 
approaches 100%. 

3) For real protocol machines, it often occurs that Nt(m, MS) >> Nc(m, MS) and Nt(m, MS) >> 
Np(m, MS, TS) and therefore FC(m, MS, TS)  100%. Thus calculations with a normal 
precision might not be sufficient to compare the test suites by their fault coverages. 

We think it is important to keep in mind these drawbacks of the fault coverage formula when 
applying it in practice. Actually, the so-called “order coverage” [YPB94b] has been proposed 
to overcome the drawback (3) mentioned above. The “order coverage”, denoted as FCO(m, 
MS, TS), can be defined by the following formula: 

FCO(m, MS, TS) = 
log (Nt(m, MS)) - log (Np(m, MS, TS))

log (N t(m, MS)) - log (N c(m, MS))
 . 

It is easy to prove that, for TS1 and TS2, FC(m, MS, TS1) ≤ FC(m, MS, TS2) if and only if 
FCO(m, MS, TS1) ≤ FCO(m, MS, TS2). It is clear that, even when Nt(m, MS) >> Nc(m, MS) 
and Nt(m, MS) >> Np(m, MS, TS), log(Nt(m, MS)) can still be comparable with log(Nc(m, 
MS)) and log(Np(m, MS, TS)). Therefore, the difference between FCO(m, MS, TS1) and 
FCO(m, MS, TS2) is often larger than the difference between FC(m, MS, TS1) and FC(m, MS, 
TS2). This implies that in most cases the test suites can be distinguished by the corresponding 
“order coverages”. 

The fault coverage formulae considered above are not the only possible ways of 
characterizing test suites, for example, the other approach [AlVu93] was proposed in a setting 
quite different from the one adopted in this paper. The framework of this paper is common for 
test derivation and analysis. It makes the relationship between these two problems more 
evident. 

 



 

   

3. CONDITIONS FOR COVERAGE 

There exist several test derivation methods for FSMs which guarantee complete fault 
coverage. Based on these methods, we can formulate certain sufficient conditions as well as 
necessary ones for the completeness of a given test suite. Here we consider only those tests 
which rely on the reliable reset feature in the implementations under test. (The corresponding 
conditions for the case without reset are somewhat more complicated, see [YPB93]). 

 
3.1. Tests for complete deterministic FSMs 
Let MS = <S, X, Y, s1, > be a complete deterministic FSM (CDFSM), where S is a set of n 
states {s1, s2, ..., sn} with s1 as the initial state; X is the input alphabet; Y is the output 
alphabet;  is the transfer function;  is the output function.Let TS be a test suite for the 
given reduced CDFSM MS. By Xa we denote the set of all input sequences (including the 
empty sequence e) which have the length of at most a. The prefix set AP(TS) of a test suite 
TS is the set which consists of all the prefixes of all the test cases in TS, i.e., AP(TS) = { p | p 
is a prefix of some test case in TS }. 

The test suite TS is called an a-exhaustive test suite for MS, if AP(TS) �Xa. 

As is stated in [Gill62], any two distinguishabe CDFSMs with n and m states, respectively, 
can be distinguished by a sequence whose length is n+m-1 in the worst case. Thus, we have 
the following property. 

Sufficient Condition 3.1.1. Let TS be an a-exhaustive test suite for the CDFSM MS with n 
states. If a ≥ m+n-1, then TS is m-complete for MS. 

This property relies on the worst case assumptions on the CDFSM MS, since only one 
parameter, namely, the number of states, is taken into consideration. In fact, we have a refined 
property of a test suite if additional parameters of MS, namely, the degrees of accessibility and 
distinguishability, are determined. 

We say that state s of MS is k-reachable from the initial state, if there is an input sequence of 
length k which transfers MS from its initial state into s. The minimum r such that each state is 
k-reachable, k≤r, is said to be the degree of accessibility of MS. Any initially connected FSM 
has r≤n-1. If the value of r is known then it is possible to construct a state cover V of MS 

which is a set of n transfer sequences to every state, each of the length of at most r. This 
parameters characterizes the controllability of the given FSM. 

Following [Gill62], we say that two states s and p of MS are d-distinguishable if there exists 
an input sequence of the length d which causes different output sequences from these states. 
The minimum d such that any distinct states of MS are d-distinguishable is said to be the 
degree of distinguishability of the given FSM MS. It is known that for any complete reduced 
FSM with n states, 1≤d≤n-1. This parameter characterizes the observability of the given FSM. 
A set of input sequences which separates (distinguishes) all states is called a characterization 
set W of MS. Such a set is used for state identification. It is always possible to construct a W 
set such that the length of its longest sequence does not exceed d. As shown in [TyBa75], the 



 

   

total length of sequences of W has the least upper bound of n(n-1)/2. We note that simple 
sequences [Hsie71], commonly known as UIO-sequences [SiLe89], may well exceed this 
bound. 

The size of complete test suites as well as fault coverage of an arbitrary test suite for an FSM 
heavily depend on the values of these parameters. Their upper bounds are given above. 
However, as shown in [TrBa73], in "almost all" cases, the degree of accessibility and 
distinguishability may actually be far smaller, being of the order of the logarithm and repeated 
logarithm, respectively, of the number of states. Several empirical studies of protocols 
confirm that existing protocols indeed tend to have rather short transfer and state 
identification sequences.  

Sufficient Condition 3.1.2. Let TS be an a-exhaustive test suite for MS with n states, the 
degrees of accessibility r and distinguishability d. If a ≥ m-n+r+d+1, then TS is m-complete 
for MS. 

This statement can be proven based on results of [Vasi73], [Chow78]. There are certain 
subsets of a-exhaustive test suites whose completenesses are also relatively easy to verify. 
Even though in the general case, the upper bound on the length of sequences in Xa cannot be 
lowered, it is still possible that the test suite is complete and contains only a subset of Xa. We 
consider in the following several types of such subsets. 

Let V be a state cover of the given FSM MS. Since the machine may possess several state 
covers, the set V is not necessarily minimal, i.e. it may contain sequences of length greater 
than r. Consider the set VXb which is the concatenation of the two sets V and Xb. 

The test suite TS is called a b-canonical test suite for the FSM MS, if AP(TS) �VXb. We have 
the following property of such a test suite [YePe89]. 

Sufficient Condition 3.1.3. Let TS be a b-canonical test suite for MS with n states, the state 
cover V, and the degree of distinguishability d. If b ≥ m-n+d+1, then TS is m-complete for 
MS. 

This condition implies Condition 3.1.1. Certain special cases are worth considering at this 
point. Assume the FSM MS has an input which distinguishes all states. In other words, 
assume a single input symbol is the diagnostic sequence and a common simple ( UIO-) 
sequence at the same time. The degree of distinguishability is equal to 1, and any test suite 
which contains the set VX2 is n-complete in the class. Another extreme case is where the 
degree of distinguishability of the given FSM reaches its maximum, i.e. d=n-1. A b-canonical 
test suite VXb is b-complete for such a machine (b≥m).  

Another type of regular test suite can be defined if a characterization set W of the given FSM 
MS is introduced. Note that the set Xd which is an interior part of a complete b-canonical test 
suite (b≥d), already contains a characterization set of MS. Consider a test suite where not all 
sequences of length d are applied to the states of MS. However, the applied sequences may 
still embody a characterization set W. We note that like state covers, the machine can possess 
several (not necessarily minimal) characterization sets, i.e. the length of their sequences may 
exceed the value of parameter d. 



 

   

Similarly to a-exhaustive and b-canonical test suites, we define a complete c-characterization 
test suite which contains the set VXcW, where V is a state cover, and W is a characterization 
set of the FSM MS. Based on the ideas of the W-method [Vasi73], [Chow78], the following 
property can be stated. 

Sufficient Condition 3.1.4. Let TS be a complete c-characterization test suite for MS with n 
states. If c ≥ m-n+1, then it is m-complete for MS.  

Fault coverage analysis in this case involves a more difficult task of checking if a 
characterization set is properly embodied in the given test suite, i.e. if it does contain the set 
VXcW. In the case where m is assumed to be equal to n, a complete 1-characterization test 
suite covers all transitions of the given FSM and there exists a characterization set whose 
sequences are applied to the initial and next states of every transition at least once. 

Next we define the so-called partial c-characterization test suites. Let Wi be a state si 
identifier which is a subset of W (in [Fuji91], it is called an identification set of state si). Let I 
be the set of n state identifiers, and R be a set of input sequences. We denote by R�I the set { 
Wi | �R & (s1,)=si }. The test suite TS is called a partial c-characterization test suite for 
the FSM MS, if AP(TS) �VXc-1W  VXc�I. This expression reflects two phases of testing 
used by the Wp-method. It is obvious that VXcW �VXc-1W  VXc�I. Based on the results of 
[Fuji91], we state the following sufficient condition for the completeness of the test suite. 

Sufficient Condition 3.1.5. Let TS be a partial c-characterization test suite for MS with n 
states. If c ≥ m-n+1, then it is m-complete for MS,  

The Wp-method does not restrict the choice of a characterization set and state identifiers. In 
particular, if every state of the FSM MS possesses a simple (UIO) sequence, then the set W 
includes all UIO-sequences (more precisely, their input parts), and the expression VXc-1W  
VXc�I gives a version of the UIOv-method [VCI89] generalized to cover the case where 
m>n.  

A slightly different sufficient condition can be obtained if, instead of the two sets W and I, the 
so-called "harmonized" state identifiers are considered [Petr91]. The set H of harmonized 
state identifiers {W1, ..., Wn} is defined as follows: si, sj �S �AP(Wi) AP(Wj) ((si, 
) �(sj, )). The approach based on harmonized state identifiers [Petr91], [PeYe92], 
[YePe90], [LPB94b] does not require the existence of the two phases of testing, in contrast to 
the Wp- and UIOv-methods. In the special case, when the FSM MS possesses a diagnostic 
(distinguishing) sequence DS, all the methods, W-, Wp-, UIOv-, HSI-, DS-methods (with 
reset) come to the same, i.e. they can produce the same test suite. 
The test suite TS is called a harmonized c-characterization test suite for the FSM MS, if 
AP(TS) �VXc�H. We have the following sufficient condition [Petr91]. 

Sufficient Condition 3.1.6. Let TS be a harmonized c-characterization test suite for MS with 
n states. If c ≥ m-n+1, then it is m-complete for MS.  

Sufficient conditions presented so far are all derived from either the known upper bounds on 



 

   

tests or the existing methods for test derivation with the proven complete fault coverage. 
There exists yet another sufficient condition (the weakest among those considered here) 
which was formulated for the case where m=n in [YPB94a] based on the results of [Petr91], 
[YePe90]. It is, in fact, a slightly relaxed version of Condition 3.1.6. 

Sufficient Condition 3.1.7. TS is an n-complete test suite with respect to the reduced 
machine MS if 
(1) AP(TS) contains a state cover V and a transition cover TC; and 
(2) for each pair of sequences [ V such that (s1, ) � (s1, ), there should be two 
sequences [ AP(TS) such that ((s1, ), ) � ((s1, ), ); and 
(3) for each [ (TC\V) and each [ V such that (s1, ) � (s1, ), there should be two 
sequences [ AP(TS) such that ((s1, ), ) � ((s1, ), ). 

It is interesting to note that any test suite generated by the DS- method (based on reset) 
[Gone70], the UIOv-method [Vuon89], the W-method [Chow78], [Vasi73], the Wp-method 
[Fuji91] or the methods based on harmonized state identifiers [Petr91], [YePe90], [LPB94b] 
satisfies this sufficient condition and therefore is n-complete.  

Sufficient conditions can be used for fault coverage analysis. In fact, we may conclude that a 
given test suite is m-complete if it contains a subset which satisfies at least one of these 
conditions. However, even if none of these conditions is satisfied, the given test suite may still 
be complete for a certain m. The condition 3.1.7. is the weakest sufficient condition. 
However, we could not yet formulate the necessary and sufficient ones in a similar way. At 
the same time, it is still possible to present certain necessary conditions. Further research is 
needed to see if the gap between these conditions can be further filled. 

Necessary Condition 3.1.8. If, for some m, m≥n, TS is m-complete for MS with n states and 
the degree of accessibility r, then the length of its longest sequence will not be less than r+m-
n. 

In particular, if, for instance, m=n  and the length of each test sequence is less than r, then 
there is at least one state of MS (reachable with a sequence of length r) that is not traversed by 
the given test suite. We have, in fact, an even stronger condition which explicitly requires that 
all states of MS must be covered by the given test suite.  

Necessary Condition 3.1.9. If, for some m, m≥n, TS is m-complete for MS, then there exists 
a state cover V such that VAP(TS). 

It is implied by the results of [Vasi73] and noted in [Yann91] that the set Xm-n must also be 
incorporated in any m-complete test suite in such a way that the traversal of all the m possible 
states in the implementation is ensured. This requirement is intuitively clear, but it still 
remains to be formalized as a necessary condition in a proper way. 

Based on the requirement that all transitions between states have to be traversed by a test 
suite, we can formulate the following conditions. 

Necessary Condition 3.1.10. If, for some m, m≥n, TS is m-complete for MS with n states and 
the degree of accessibility r, then the length of its longest sequence will not be less than r+m-



 

   

n+1. 

Necessary Condition 3.1.11. If, for some m, m≥n, TS is m-complete for MS, then there 
should exist a transition cover TC such that TCAP(TS). 

Here it is required that at least all transitions in the specification machine are covered. An 
even stronger necessary condition could be stated if we require that the next state of every 
transition must be eventually distinguished from any other state. We believe that further 
research will expand the list of conditions for (in-) completeness of a test suite with respect to 
the various types of FSMs, eventually making fault coverage analysis much more practical. 
These conditions also help to identify which obligatory part of the test suite is missing and 
should be added in order to increase its fault coverage, if required.  

3.2. Tests for partial deterministic FSMs 
A specific feature of partial machines is that they have "undefined" transitions. There are 
several different conventions used for "undefined" transitions [PBD93]. Under the 
completeness assumption, the given partial FSM is substituted by a quasi-equivalent complete 
FSM, and the problems of test derivation and fault coverage analysis are then reduced to those 
associated with complete machines. The other conventions for undefined transitions, namely, 
"undefined by default" (also called “don’t care”) and "forbidden", require a test suite 
constructed from acceptable (defined in MS) input sequences. If some test sequence covers an 
undefined transition, then, under the "undefined by default" convention, its verdict must be 
inconclusive; under the "forbidden", this test sequence is not executable and should be 
excluded from the test suite. Several testing situations requiring the model of partial FSMs 
with these conventions have been already identified, see [PYL93], [PYD94]. This 
demonstrates that the completeness assumption is not as universal as it was once considered 
earlier in protocol engineering, and partial machines deserve a special treatment. 

Test derivation, and therefore fault coverage analysis for reduced partial (deterministic) 
machines, can still be performed in a manner similar to that used for complete machines, 
because all states are distinguishable and can be identified. Problems arise when some states 
are not distinguishable, i.e. the machine becomes unreduced. In this case, the number of states 
of the given machine does not characterize the properties of the machine essential for fault 
coverage. As shown in [Yevt89], a more subtle parameter, the so-called fuzziness degree, 
better characterizes such a machine.  

Consider the partition of the set S of states of the given FSM MS into subsets {S1, ..., Sf} such 
that every subset includes only pairwise distinguishable states. The number f of subsets in the 
minimal partition is called the fuzziness degree of the PFSM MS [YePe89], [LPB94b]. If MS 
happens to be complete and minimal, then f=1. The larger the number of pairs of quasi-
equivalent states, the higher the fuzziness degree usually is. For a "fully unreduced" machine, 
f = n.  

In spite of these distinctive features of partial machines, it is still possible to extend the notion 
of regular test suites (introduced for completely specified machines) to these machines.  

The test suite TS is called an a-exhaustive test suite for an FSM MS, if AP(TS) �XaXA
*
, 

where XA
*
 is the set of acceptable input sequences of MS. 



 

   

Sufficient Condition 3.2.1. Let TS be an a-exhaustive test suite for the FSM MS with n states. 
If a ≥ mn, then TS is m-complete for MS. 

The bound mn can be reached in very special, pathological FSMs, deliberately created (an 
example can be found in [YePe89]). Luckily, the existing protocol machines do not resemble 
these FSMs.  

Similarly, the notion of a b-canonical test suite is generalized to partial machines. 

Sufficient Condition 3.2.2. Let TS be a b-canonical test suite for the FSM MS with n states, 
the state cover V, the degrees of distinguishability d, and fuzziness f. If b ≥ fm-n+d+1, then 
TS is m-complete for MS. 

In the special case, where f=1, this condition reduces to the condition 3.1.3. 

It was shown in [Petr91], [YePe90], [LPB94a] that c-characterization test suites (and 
therefore sufficient conditions for the completeness of test suites such as 3.1.4 - 3.1.6) can be 
generalized to partial, even unreduced machines. The basic idea behind these methods which 
generalizes the traditional state identification approach, lies in counting distinct states 
traversed by a test sequence to ensure that all possible states and transitions in an IUT are 
covered and tested. Even though these methods produce test suites whose structure is like 
those for complete machines, the complete test suites for partial machines may be longer than 
those for complete machines with comparable parameters. In this case, the degree of 
distinguishability has a tight bound of n(n-1)/2, instead of n-1 for complete machines. 
Moreover, certain states might not be distinguishable at all.  

 

4. DIFFERENT APPROACHES TO FAULT COVERAGE ANALYSIS  

Fault coverage analysis is to calculate FC(m, MS, TS), for the given TS, m and MS. As is 
clear from its definition, in order to calculate the fault coverage, we need to find the number 
of machines in Impl(m, MS) which cannot pass the given test suite TS, or we need to find the 
number of machines in Impl(m, MS) which can pass the given test suite TS. However, their 
exact values are in general too difficult to find. In the following subsections, we will review 
the approaches that are proposed to tackle this problem. 

4.1. Exhaustive mutation analysis 
Exhaustive mutation analysis can be used to find the exact value of Np(m, MS, TS). The idea 
is to enumerate all the implementation machines in Impl(m, MS) and to execute (simulate) all 
of them, one by one, against the given test suite TS. By counting the number of 
implementation machines that can pass the test suite TS we obtain the exact value of Np(m, 
MS, TS). In this way, the precise value of fault coverage FC(m, MS, TS) can be calculated. 
The complexity of this approach is high since the total number of machines Nt(m, MS) is 
equal to (m|Y|)m|X|, where X and Y are the input and output alphabets of MS. The exhaustive 
approach is only applicable for rather small m, X and Y. 

4.2. Monte-Carlo simulations 



 

   

For large m, X and Y, the exhaustive mutation analysis approach is not feasible due to the 
huge number of implementation machines that should be executed. Therefore, the partial 
mutation analysis approach based on Monte-Carlo simulation has been proposed in [SaSp90], 
[DDB91], [SiLe89] and [MCS93]. The idea is to first randomly generate k implementation 
machines in Impl(m, MS), where k is a relatively small integer. Each randomly generated 
machine is then executed to see if it can or cannot pass the test suite. A randomly generated 
machine capable of passing the test suite is then further checked to see if it conforms to the 
specification machine MS. In this way, we can find k', the number of randomly generated 
machines which cannot pass the test suite, and k'', the number of randomly generated 
machines which conform to MS. Then k'/(k - k'') gives an approximate value of the fault 
coverage FC(m, MS, TS). The set of implementation machines Impl(m, MS) is often 
partitioned into several classes, such as the class of machines containing one transfer fault 
(only Type 1 change is applied once), the class of machines containing two transfer faults 
(only Type 2 change is applied twice) and so on [DDB91], [SiLe89], [MCS93]. For each class 
of implementation machines, the Monte-Carlo simulation is then applied. Therefore, we have 
the estimated fault coverage for each class of implementation machines. 

4.3. Structural analysis 
Both the exhaustive mutation analysis and Monte-Carlo simulation approaches require (part 
of) the implementation machines in Impl(m, MS) to be generated and executed against the 
given test suite. When m = n, i.e. the upper bound m on the number of states of an 
implementation is equal to the number of states n of MS, the structural analysis approach 
proposed in [YPB94b] can be used to avoid the generation and execution of implementation 
machines. The idea of this approach is to obtain an estimated value of Np(n, MS, TS) by 
directly analyzing the structure of specification machine against the test suite. Let Np(n, MS, 
TS) denote the estimated value of Np(n, MS, TS). Then 

FCe(n, MS, TS) =  
Nt(n, MS) - Np(n, MS, TS)

N t(n, MS) - N c(n, MS)  

gives us the estimated fault coverage. The value of Nt(n, MS) is given by Nt(m, MS) = 
(m|Y|)m|X| (see Section 2), which corresponds to the fact that for each transition with given 
state and input, there are m|Y| pairs of possible next state and output values. The value of 
Nc(n, MS) is given by Nc(n, MS) = (n-1)!. The formula (n-1)! reflects the fact that any 
permutation among the names of the states of the FSM, except for the initial state, does not 
change its behavior, and there are (n-1)! such permutations.  

The technique used to derive the estimated value Np(n, MS, TS) is based on the following 
concepts. The tail state sj of a transition < si; x/y; sj > in MS is said to be distinguished from 
another state sk by TS if there are x x[ AP(TS) such that 

(s1, ) = si,(s1, x) = sj,  (s1, ) = sk and ((s1, x), ) � ((s1, ), ). 

For a transition < si; x/y; sj > in MS, we use Tail_Dis(< si; x/y; sj >, TS) to denote the set of 
states from which the tail state sj of transition < si; x/y; sj > is distinguished. Then, 
Tail_NDis(< si; x/y; sj >, TS) is the set of states from which the tail state sj of transition < si; 



 

   

x/y; sj > is not distinguished. 

For a transition < si; x/y; sj > covered by TS, we can easily calculate Tail_Dis(< si; x/y; sj >, 
TS) and therefore Tail_NDis(< si; x/y; sj >, TS). Since a state in Tail_NDis(<si; x/y; sj>, TS) 
is not distinguished from the tail state sj of < si; x/y; sj >, changing the tail state sj of transition 
< si; x/y; sj > to any state in Tail_NDis(< si; x/y; sj >, TS) will give us an implementation 
machine which can pass the test suite TS. Therefore, there are |Tail_NDis(< si; x/y; sj >, TS)| 
possible ways to make such a Type 1 change. However, we should note that, as transition < si; 
x/y; sj > is covered by TS, changing the output symbol “y” to any other output symbol (Type 
2 change) will result in an implementation machine which is very likely to be detected by TS. 
Therefore, to guarantee generation of an implementation machine which can pass TS, we 
have only one choice: keeping the output “y” of the transition. Consequently, the given 
transition < si; x/y; sj > covered by TS gives us |Tail_NDis(< si; x/y; sj >, TS)| possible ways 
of generating an implementation machine which can pass the test suite TS. It can be noted 
that if the condition 3.1.7 is satisfied then Tail_NDis(< si; x/y; sj >, TS) = { sj } and 
|Tail_NDis(< si; x/y; sj >, TS)| = 1. 

For a transition < si; x/y; sj > not covered by the given test suite TS, its tail state sj is not 
distinguished by TS from any state. Therefore, we have Tail_NDis(< si; x/y; sj >, TS) = { s1, 
s2, ..., sn }. Furthermore, since the transition is not covered by TS, we can change the output 
symbol “y” to any symbol in Y and still get a mutant machine which can pass TS. Combining 
the possible ways of changing the tail state (Type 1 change) and the possible ways of 
changing the output (Type 2 change), we can immediately conclude that, for the transition < 
si; x/y; sj > which is not covered by TS, there are |Tail_NDis(< si; x/y; sj >, TS)| x |Y| = n|Y| 
possible ways to generate an implementation machine which can pass the test suite. As a 
result, the set of all the transitions not covered by TS gives us (n. Y)u choices to generate an 
implementation machine which can pass TS (where u is the number of transitions not covered 
by TS). 

As we have discussed in Section 2, an implementation machine is completely defined. 
Therefore, for the given specification machine MS which is in general partially specified and 
has the specification domain DS, we need to apply the Type 3 operation to add an extra 
transition for each (si, x) [ (S x X) \ DS. Since the tail state of such an extra transition can be 
any of the n states s1, s2, ..., sn and the output symbol can be any one in Y, we know that there 

are a total of (n. Y)n X  - DS possible ways to generate an implementation machine by adding 
n|X| - |DS| extra transitions. 

Following from the above discussions, we have 

NP(n, MS , TS) = p(n|Y|)n|X| - |DS| + u |Tail_NDis(< si; x/y; sj >, TS)| 
< si; x/y; sj >

covered  

implementation machines in Impl(n, MS) which are estimated to be able to pass the given test 
suite. Here u is the number of transitions not covered by TS, and p is a factor which 
represents the estimated number of permutations that are possible among those states that are 



 

   

identified by the test suite. (Note that the factor p was not included in our previous version of 
this formula published in [YPB94b]). 

An estimation for p may be obtained by the following reasoning. In the case of a completely 
specified FSM and a nearly complete test suite which covers all states and transitions (u = 0), 
the above formula becomes 

(n-1)! |Tail_NDis(< si; x/y; sj >, TS)| 
< si; x/y; sj >

covered

 

where the factor (n-1)! reflects the fact that any permutation of the names of the states of the 
FSM, except the initial one, does not change its behavior. For every implementation machine 
counted by the product expression of the formula, there are (n-1)! isomorphic machines. The 
value of p is (n-1)! in this case. 

At the other extreme, a test suite of length one for a completely specified FSM, covering a 
single transition, does not identify any state. Such a test suite allows for n different next states 
for the covered transition and for (n|Y|) possibilities for each of the other transitions. This 
gives a total of n(n|Y|)n|X|-1 different implementations. The factor n corresponds to the fact 
that Tail_NDis is equal to n for the transition covered. Comparing this with the above 
formula for Np(n, MS, TS), we find p = 1; this corresponds to the fact that only the initial state 
is identified and no other permutations exist. This confirms that  1 ≤ p ≤ (n-1)!. 

While in the above extreme cases, it is possible to find the exact number of permutations of 
identified states, in all the other cases, we can only try to estimate the value of p from the list 
of state pairs distinguished by the TS. Assuming that the number of state permutations 
allowed by the TS is proportional to the number d of state pairs distinguished by the TS, we 
obtain the following estimation for p: 

p = ((n-1)! - 1) d
n(n-1)/2

 + 1.  

The structural analysis approach has a very low computational complexity O(L2), where L is 
the size of the test suite in terms of the total number of inputs in the test suite. It has been 
implemented and a number of experimental results have been reported in [YPB94b]. 
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Figure 1: An example FSM 
 
Here we present the results for the following eleven test suites derived from the FSM MS 
presented in Figure 1.  
 
TS1 =  
TS2 = { r.1 } 
TS3 = { r.1.1.2, r.2.1.2.1 } 
TS4 = { r.1.1.2, r.2.1.2.1, r.2.2.1 } 
TS5 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2 } 
TS6 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2 } 
TS7 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2.2 } 
TS8 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2.2 } 
TS9 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2.2.1 } 
TS10 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2.2.1.2.1 } 
TS11 = { r.1.1.2.1.1.1, r.1.1.2.1.2.1, r.1.2.1.2.1, r.1.1.2.2.1.1.2.1, r.1.1.2.2.1.2.1,  
    r.1.1.2.2.2.1, r.1.2.2.1, r.2.1.2.1.1, r.2.2.1.2.2 } 
 
Applying our structural analysis approach to these test suites yields the estimated fault 
coverage listed in the third column of Table 1. The numbers of state pairs distinguished by 
test suites are given in the second column. To assess the accuracy of these estimated fault 
coverage values, we compare them with the precise fault coverage values for these test suites. 
Fortunately, for the small specification machine given in Figure 1, we have been able to make 
an exhaustive mutation analysis. We have written a program which generates and executes 
one by one all the (4 x 2)(4 x 2) = 16777216 possible implementation machines against each of 
the above eleven test suites. Therefore, we have been able to calculate the precise fault 
coverage for these test suites and the results are listed in the forth column of Table 1. The 
differences between the estimated and precise fault coverage are listed in the fifth column of 
Table 1. The last column gives the relative error for each test suite, i.e. the absolute deviation 
value devided by 1 - FCp(n, MS, TS).  
 

TSi d FCe(n,MS,TS) FCp(n,MS,TS) Deviation Relat. error 
1 0   0.00000%   0.00000%  0.00000%   0.00000% 
2 0 50.00014% 50.00014%  0.00000%   0.00000% 
3 3 97.69313% 99.25871% -0.43442% 58.55348% 
4 4 99.52420% 99.66497% -0.14077% 42.01713% 
5 4 99.52420% 99.66898% -0.14478% 43.73754% 
6 4 99.76223% 99.77655% -0.01432%  6.40859% 
7 4 99.76223% 99.88084% -0.11861% 99.53844% 
8 4 99.88132% 99.92032% -0.03900% 48.94578% 
9 5 99.97884% 99.95232%  0.02652% 55.62081% 
10 6 99.99341% 99.97926%  0.01415% 68.22565% 
11 6 100.0000% 100.0000%  0.00000%   0.00000% 

Table 1: Fault coverage for the FSM in Figure 1 



 

   

The above considerations apply also to the order coverage. In this case, we have, in fact, a 
very simple way to estimate the order coverage of the given test suite based solely on the 
number u of transitions uncovered. If we use logarithms of the numbers of machines as we 
did in the formula for the order coverage then the fault coverage can be approximated as 
follows: 

FCo (n, MS, TS)  DS - u
DS

. 

The order coverage of the given test suite is approximately proportional to the number of 
transitions covered by it. This formula reflects a simplified intuitive understanding of the fault 
coverage as a percentage of transitions covered by the test suite. 

4.4. Deciding the m-completeness of a test suite 
The other type of fault coverage analysis is used to decide if a given test suite is m-complete 
with respect to a specification machine. In certain cases, m-completeness can be verified 
based on the sufficient conditions given in Section 3, however, an arbitrary test suite requires 
more complicated methods. 

In the case of deterministic FSMs, this problem is actually very close to an automaton 
identification problem considered in automata theory [Gill66], [Kell71], [Sier93]. Given a set 
of input/output sequences TS, list all the machines within the given bound m on the number of 
states, which can produce it. The methods solving this problem can be classified into two 
categories: the enumerative and constructive methods. The classical approach to this problem 
is based on general state minimization techniques for partial FSMs, as any deterministic TS 
can be interpreted as a partially specified deterministic machine. By its nature, the problem of 
state minimization involves enumeration of solutions. However, due to special structure of 
this partial FSM it is possible to find improved state merging methods. In particular, an 
efficient method was elaborated in [Kell71] for the case where TS is a single sequence, which 
was shown to be faster and more efficient than the state minimization algorithm for arbitrary 
partial FSMs. Based on this result, we have suggested [YPB94a] a more general state 
minimization procedure to treat test suites with multiple sequences (the reset assumption). As 
often happens, a long standing problem is later tried with a new approach: in [VuKo90], 
[ZhCh94], the constraint satisfaction techniques of artificial intelligence were applied to 
generate machines that can pass the given test suite. Automated tools for fault coverage have 
been implemented independently for the two recent techniques [YPB94a] and [ZhCh94].  

Once we construct the machines which have no more than m states and can pass the given test 
suite, the remaining problem becomes simple. If all these machines are (quasi-) equivalent to 
the given specification machine MS then the TS is m-complete; otherwise, it is not m-
complete. If all non-conforming machines constructed from TS are retained, then its fault 
coverage can also be characterized numerically. Techniques for comparing two FSMs with 
respect to the quasi-equivalence are explained, for instance, in [Gill62] and in [DaSa88], 
where this relation was called the containment. 

With our approach [YPB94a], for example, the checking of the m-completeness of a test suite 
proceeds in three steps: 
Step 1: Convert the given test suite TS into a tree machine M which is essentially the same as 
the so-called test tree in some literature. 



 

   

Step 2: Call the state minimization procedure to minimize the tree machine M.  
Step 3: If a minimal (or reduced form) of the tree machine is found in Step 2 which does not 
conform to MS and has no more than m states, the test suite is not m-complete; Otherwise, it 
is m-complete. 
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Figure 2: An example specification FSM 
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         Figure 3: The tree machine    Figure 4:  The minimal form found 

As a concrete example, let us consider the test suite TS = {r.a.b.b, r.b.a.a} derived from the 
specification machine shown in Figure 2. We want to check if this test suite is 3-complete. 
The tree machine M representing this test suite is shown in Figure 3. By using the state 
minimization procedure, a minimal form of the tree machine can be found which has two 
states as shown in Figure 4, and does not conform to the specification machine of Figure 2. 
The two states of the minimal form are actually obtained by merging the states of the tree 
machine in Figure 3. It can therefore be concluded that the given test suite is not 3-complete. 



 

   

The approach presented in [YPB94a] can be applied to specification machines which are 
partially specified, initially connected and possibly non reduced. The corresponding tool 
provides three options when performing fault coverage analysis: (1) searching for a mutant 
which does not conform to the specification machine MS; (2) searching for a mutant which 
has the smallest number of states and does not conform to the specification machine MS; and 
(3) searching for all the mutants which do not conform to the specification machine MS. The 
upper bound on the complexity of this approach is O(mL), where L is the number of states of 
the tree machine representing the test suite. However, a number of experiments have shown 
that the actual complexity in practice is far less than this upper bound. 

Another approach for deciding the m-completeness of a test suite can be found in [ZhCh94]. 
The idea behind this approach comes from the CSP method for test suite generation 
[VuKo90]. The so-called variables in this approach correspond to the states of the tree 
machine (representing the test suite) in the state minimization based approach [YPB94a]. The 
preprocessing and backtracking algorithms presented in [ZhCh94] correspond to the two 
techniques used in [YPB94a], namely the generation of compatible partitions (coverings) and 
the verification of the closure property, respectively. Therefore, for a given completely 
specified specification machine, these two approaches give the same computational 
complexity. In fact, the construction of a minimal FSM from the given set of input/output 
sequences was shown to be computationally hard [Gold78]. 
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Figure 5: Difference between strong and weak conformance 

A crucial difference between these two approaches can be observed in the case of a partially 
specified specification machine. Zhu and Chanson’s approach [ZhCh94] is based on the 
equivalence relation (called strong conformance [SiLe89]) and therefore can only be applied 
to completely specified machines. In the case that a given specification machine is only 
partially specified, the specific completeness assumption is made that the machine will remain 
in the present state without producing any output (or null output) for any unspecified input. 
As an example, the partially specified specification machine given in Figure 5(a) will have to 
be converted into the machine shown in Figure 5(b). On the other hand, the state 
minimization based approach [YPB94a] uses the quasi-equivalence relation (called weak 
conformance in [SiLe89]) and accordingly can be directly applied to partially specified 
machines, such as the one given in Figure 5(a). The non-specified part is treated as “don’t 



 

   

care”  and can be implemented in an arbitrary way. For instance, the implementation machine 
shown in Figure 5(c) can pass the test suite { r.a.b, r.b.a } and is taken as a conforming 
implementation. However, with Zhu and Chanson’s approach, this implementation will have 
to be listed as a non-conforming mutant as it is not equivalent to the specification machine 
given in Figure 5(b).  

 

5. FURTHER PROBLEMS RELATED TO FAULT COVERAGE ANALYSIS 

There are several directions for future work in fault coverage analysis of protocol tests. In 
what follows, we briefly address some of them. 

5.1. Extended FSMs 
An extended FSM model in its most general form makes it impossible to directly apply the 
FSM-based techniques for fault coverage evaluation. The problem is that it is unrealistic to 
execute during testing all the possible combinations of protocol parameters (as implied by the 
methods considered in Section 4), unless the domains of variables are reduced in such a way 
that the EFSM can be unfolded into an FSM of reasonable size. Next issue is the executability 
of test sequences with respect to the EFSM specification. Since it is not obvious that any 
given input/output sequence can be produced by the EFSM, the test suite should be validated 
[NaSa93] before being analyzed for its coverage. Last but not least, there is the problem of 
finding an appropriate model of faults in terms of EFSMs. The notion of fault coverage for 
EFSMs should be in general based on a more restricted type of faults than those modeled by 
pure FSMs while at the same time allowing one to deal with both control and data flows of 
protocols. However, regardless of some initial work in this direction [WaLi93], [GuPr90], 
[FaPe90], it is not yet well understood which fault models are most appropriate for the 
combined testing of control and data aspects of protocols. The approach based on user-
defined fault models [PeYe92], [WaLi93] may be helpful in dealing with the EFSM 
specifications. 

5.2. Nondeterministic FSMs and LTSs 
By their nature, nondeterministic systems are more difficult to analyze than the deterministic 
ones, and fault coverage analysis is no exception. To the best of our knowledge, no direct 
results on fault coverage analysis with respect to nondeterministic FSM or LTS specifications 
have been reported so far. Nondeterminism causes several problems such as the following: 
- an additional assumption about IUTs must be made, namely, the complete testing 
assumption, viz. the IUT should exhibit during testing all its nondeterministic choices; 
- not just one, but several relations may be used as a conformance relation, therefore a test 
suite complete with respect to one relation might not be complete with respect to another 
(finer) relation; 
- the notion of a fault must be defined in the context of a particular conformance relation. A 
simple mutation technique employed in the deterministic case may fail to explain faults in 
nondeterministic implementations.  

These problems are also addressed in test derivation for nondeterministic systems (FSMs and 
LTSs). As work in this direction continues, we may expect that these results will offer 
solutions to fault coverage analysis. Note that test derivation for NFSMs, for instance, is also 
a relatively new research subject. Several heuristic approaches can already be found in the 



 

   

literature; however, they are of little help in tackling the problems related to fault coverage 
analysis for nondeterministic machines. There are also some methods which guarantee m-
completeness of test suites w.r.t. the quasi-equivalence and the reduction relations [YLP91], 
[PYL93], [LPB94a], [LPB94b]. As an example, in [LPB94b], it is proven that a harmonized 

c-characterization test suite, that is, a TS of the form (VXfm-n+1XA
*
)�H, is m-complete for 

an arbitrary observable (possibly unreduced, partial and nondeterministic) FSM with respect 
to the quasi-equivalence relation. In fact, nondeterminism does not seem to create any 
insurmountable difficulties for test derivation and analysis with respect to this conformance 
relation. We conjecture that several results and approaches discussed in this paper for 
deterministic machines can be extended to nondeterministic ones in a similar way. The new 
essential feature is that a test suite includes not only input events but also output events, a 
complete test suite must foresee all the specified reference reactions to its input sequences to 
ensure the (quasi-) equivalence between an IUT and the specification machine. There is a 
need, therefore, for a kind of validation of a given test suite to further decide its completeness. 
Such a validation is quite straightforward in the case of the quasi-equivalence relation. 
However, in the case of the reduction relation, when a conforming implementation is allowed 
to produce a subset of specified output sequences, it is often possible that only deterministic 
implementations are submitted for testing. Then, it becomes less obvious whether the 
input/output sequences included in the given test suite can be produced by a deterministic 
reduction of the specification NFSM [PYL93]. The study of the reduction relation between 
NFSMs initiated in [PYL93] and [PYB94] should help to better understand the issues related 
to fault coverage analysis for nondeterministic machines.  

In the case of FSM specifications of protocols, the choice of the appropriate conformance 
relation for test derivation and analysis is limited by a small number of alternatives and 
usually can be made in an obvious way. If, however, the protocol is abstracted into an LTS 
model, then this choice becomes less evident. Both test derivation and test analysis rely on the 
notion of a faulty implementation defined by the chosen conformance relation. This relation 
might be either the equivalence or a preorder in a particular semantics. At the same time, it is 
not even clear which LTS semantics better reflects the conformance requirements for protocol 
implementations. The semantics which determines the conformance with respect to the given 
LTS specification affects the way deadlocks are treated in conformance tests and is crucial in 
analyzing their fault coverage.  

Recent results in test derivation for LTSs demonstrate a strong tendency toward reusing the 
ideas developed in the context of FSM-based testing for LTS-based testing. In particular, 
several papers extend the state identification approach to specifications given in form of an 
LTS [FuBo91], [CKM92], [Arkk93]. It is also suggested [PBD93] that tests for a given LTS 
could be obtained from tests directly generated by the existing FSM-based methods from a 
proper FSM constructed from the LTS in the chosen semantics. As the work in this direction 
continues we may well expect that FSM-based results on fault coverage analysis will also be 
adopted in the context of the LTS formalism. Some conditions for completeness of test suites 
discussed above can be reformulated for LTSs and a relevant equivalence relation. The idea 
of checking the completeness of a test suite through state minimization seems to work for 
LTSs as well. The basic ideas behind the structural analysis explained in Section 4.3 can also 
be adopted for this case. However, this is only one possible scenario of future research in fault 
coverage analysis in terms of the LTS model. 

5.3. Test architectures 



 

   

So far we have considered strategies for fault coverage analysis in the case where any given 
test suite can be executed by an appropriate (abstract) tester, since test events were assumed 
to be events on the interfaces of an IUT. As well known, more complex test architectures 
hinder the achievement of full fault coverage. Therefore a particular test architecture for 
which the given test suite is designated has to be taken into consideration. 

As an example, consider the distributed test method. The abstract tester is implemented in two 
testers, and in certain testing situations, it is required that the test suite should also perform a 
synchronization between the testers. This requirement imposes an additional restriction on the 
selection of test sequences [SaBo84], [BoUr91], [LDB93]. As a result, all possible m-
complete test suites may not be synchronizable. It is noted [LDB93] that the distributed test 
architecture weakens fault coverage in the sense that certain faults can never be detected by 
synchronizable tests. In this context, fault coverage analysis of the given synchronizable tests 
has to be adjusted to consider only detectable faults. However, even the problem of 
characterization of such faults still remains open.  

A similar deterioration of testability arises when a test suite to be analyzed for its 
completeness must be executed through other components, for instance, in the embedded test 
architecture. In this case, the given test suite is initially composed of events on interfaces 
which are not directly accessible by tester(s). It must first be analyzed if all inputs can 
actually be excited by, and outputs uniquely delivered to, tester(s). Even if it is the case, 
depending on properties of the environment of the IUT, certain faults can be masked or 
cannot be activated, as discussed in the accompanying paper [PYD94]. Similar observations 
are reported for LTS specifications [DAS93]. As follows from these results, the problem of 
fault coverage analysis for the embedded testing becomes more cumbersome. At the same 
time the idea of determining a testable representation of the IUT [PYD94] could provide a 
possible solution.  

We conclude that future research should address the influence of the test architecture on the 
fault coverage of a test suite. 

 

6. CONCLUSIONS 

Fault coverage of tests for the given finite-state specification of a protocol has been 
recognized as an essential and challenging problem by the protocol engineering community. 
Test analysis and test derivation are closely related topics. Moreover, results achieved in one 
direction help to make further progress in the other, as we have tried to demonstrate in this 
paper. Our discussion on fault coverage methods would not be complete unless additional 
potential areas of their application are mentioned. 

Besides their immediate predestination, the techniques for fault coverage analysis can be used 
for incremental test suite development. When a given test suite is found to be not m-complete, 
then a machine should have been generated which is not quasi-equivalent to the specification 
machine. An additional test case can now be derived which distinguishes this generated 
machine from the specification machine. The test suite, which includes the newly generated 
additional test case, is then checked again for m-completeness. This process is repeated until 
the test suite has achieved m-complete fault coverage. However, it is not yet clear how much 



 

   

one could benefit from this approach compared to the conventional test derivation methods 
which guarantee complete fault coverage.  

Another possible application of the techniques for deciding the m-completeness of tests is to 
the diagnostics of FSM implementations [GhBo92]. If an FSM implementation based on an 
FSM specification fails to pass a given test suite, then a tree machine is constructed with the 
input sequences in the test suite and the corresponding output sequences observed during the 
testing. This tree machine is then minimized. Any reduced machine obtained definitely does 
not conform to the given specification machine, and therefore represents a possible faulty 
implementation machine. By comparing this reduced machine with the specification machine, 
we are able to tell what implementation faults are in the implementation machine. However, 
such a diagnosis may become less informative if several such reduced machines are obtained 
in the cases of multiple faults and tests with a poor fault coverage. 

Fault coverage analysis is also useful for elaborating the heuristics which could guide test 
derivation in the absence of an explicit fault model. The heuristic methods attempt to produce 
a test suite of a reasonable size at the price of a possibly weakened fault detection power, 
compared to the methods which guarantee complete fault coverage. In particular, there is an 
ever growing number of methods where a test sequence is constructed from the UIO-
sequences in one way or another without having an explicit fault model beforehand. As 
recently shown in [ZhCh94], further reducing the length of a test sequence by overlapping test 
segments may lead to a loss of fault coverage. In this context, the fault coverage analysis of 
UIO-based tests undertaken in [MCS93], [LoSh92], [MiPa92], [ZhCh94] could lead to refined 
test selection criteria with a better compromise between the fault coverage and the size of a 
test suite. 
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